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This paper describes improvements in a Farrow-structured variable fractional delay (FD)

Lagrange ¯lter for all-pass FD interpolation. The main idea is to integrate the truncated sinc
into the Farrow structure of a Lagrange ¯lter, in order that a superior FD approximation in the

least-square sense can be achieved. Its primary advantages are the lower level of mean-square-

error (MSE) over the whole FD range and the reduced implementation cost. Extra design

parameters are introduced for making the trade-o® between MSE and maximal °atness under
di®erent design requirements. Design examples are included, illustrating an MSE reduction of

50% compared to a classical Farrow-structured Lagrange interpolator while the implementation

cost is reduced. This improved variable FD interpolation system is suitable for many applica-
tions, such as sample rate conversion, digital beamforming and timing synchronization in

wideband software-de¯ned radio (SDR) communications.

Keywords: Canonical signed digit (CSD); Farrow structure (FS); FPGA; fractional delay (FD);

Lagrange; least-square (LS); mean-square-error (MSE).

1. Introduction

Fractional delay (FD) ¯ltering is utilized in many applications of signal processing,

such as timing mismatch calibration of time-interleaved analog-to-digital converters

(ADCs),1–3 sample rate conversion,4 image processing,5 digital beamforming6 and
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timing synchronization in digital receivers.7 Speci¯cally, in digital communication

systems, the propagation delay from the transmitter to the receiver is generally

unknown at the receiver. Hence, symbol timing must be derived from the received

signal. When designing a digital baseband receiver on ¯eld programmable gate

arrays (FPGAs), the received signal is typically uniform-sampled at a ¯xed ADC

clock. Thus, the timing error is a fraction of the ADC sample period and can vary

with time. This timing error can signi¯cantly degrade the communication, thus,

timing adjustment must be done before decoding the received signal.

Variable FD interpolation ¯lters have been widely investigated for timing syn-

chronization in all-digital receivers since it is desired to realize the fractional inter-

polation in an e±cient way from the perspective of hardware implementation.7,8 The

well-known Farrow structure (FS) can easily accommodate adjustable FDs without

the need of changing the ¯lter coe±cients,9–14 and hence its constant ¯lter coe±-

cients can be e±ciently realized in sum-of-power-of-two (SPT) representation15 or

even in canonical signed digit (CSD) representation16 on FPGA. Generally, digital

¯lters are usually divided into two classes: ¯nite impulse response (FIR) ¯lters and

in¯nite impulse response (IIR) ¯lters. The Thiran all-pass ¯lter is one of the most

popular IIR FD ¯lters, however, pipelining is not allowed owing to the inherent

feedback loop, limiting the maximal clock frequency of the FD interpolation systems.

In contrast to an IIR ¯lter, there is no feedback in an FIR ¯lter, making it inherently

stable. The FIR ¯lters implemented on FPGA usually use a series of delays, multi-

pliers and adders to generate the ¯lter outputs. Therefore, an FIR ¯lter can be easily

pipelined to increase the maximal clock frequency, and the e®ective throughput and

the clock frequency are decoupled thanks to parallelization. The maximally allowable

clock frequency of an FIR ¯lter is then limited to the speed of the FPGA building

blocks. In this sense, the FIR-based variable FD interpolation with FS-pipelined

structure is preferred when implementing a wideband all-digital receiver system on

FPGA. In Ref. 17, a multi-rate technique has been applied to the design of wideband

variable FD FIR ¯lters by making the input signal narrowband with respect to the

¯lter sampling rate. However, increasing the sampling rate before the FS would

increase the resources for a given maximal clock frequency in FPGA parallelization.

Moreover, in all-digital receiver systems, the Shannon sampling scheme is usually

implemented by using one ADC. In this case, the wideband FD interpolation ¯lter

using the derivative sampling method18 is only applicable with a discrete-time dif-

ferentiator on FPGA, leading to extra implementation cost.

Variable FD interpolation ¯lters are required to have a constant magnitude

response for any given FD delays. The weighted-least-square (WLS) or least-square

(LS),19–23 minimax24 and maximally °at25,26 criteria can be used for the approxi-

mation of these FD ¯lters as discussed in Ref. 27. The WLS (or LS) method is a

closed-form design. Since the ¯lter coe±cients are obtained by minimizing the energy

of the weighted error between the actual transfer characteristic and the desired

transfer characteristic, this design method can provide us with an optimal solution in
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the sense of LS error. The maximally °at approximation leads to the closed-form

solution of FD FIR ¯lters with a maximally °at magnitude response of unity and a

constant group delay response at the zero frequency. The maximally °at FIR FD

interpolation systems, also known as the Lagrange-type FD interpolation ¯lters, are

easy to use because its coe±cients can be explicitly expressed as polynomials of the

variable FD parameter. Di®erent formulas for the Lagrange interpolators are derived

in Ref. 25. It has been also shown that truncating the coe±cients can also obtain a

variable FD ¯lter with wider bandwidth as compared with the original one (without

truncation).28 However, the approximation of Lagrange FD interpolation ¯lters is

heavily degraded at high frequencies, especially when the FD approaches half the

sample period.

In this paper, we will combine both the maximally °at and the LS (or WLS)

criteria to optimize the FD interpolation ¯lters. Our observations show that if the

sub-¯lters of an FS-based Lagrange interpolation are slightly modi¯ed by intro-

ducing extra correction terms derived from the LS design method, a superior ap-

proximation of an ideal FD interpolation can be obtained without additional

implementation cost. The polynomial degree, the ¯lter order and the length and

location of the correction terms can be further jointly optimized. The contribution of

this paper is three-fold. First, the variable FD interpolation ¯lter approaches the

optimal solution in the LS error sense. Second, extra design parameters are provided

to make the trade-o® between the LS error and the maximal °atness for di®erent

design requirements. Third, the proposed ¯lter features the advantages of the FS in

terms of variable FD.

The remainder of this paper is organized as follows. In Sec. 2, the LS design

method, the FS-based variable FD FIR ¯lter and the Lagrange interpolation are

reviewed. In this section, performance metrics are de¯ned as well. In Sec. 3, the

cascaded ¯lter structure and its dual form are described. In Sec. 4, the LS-based

interpolation ¯lter is integrated into the FS of the Lagrange variable FD interpo-

lation ¯lter. The performance and the implementation cost of the proposed ¯lter are

evaluated. Finally, conclusions are drawn in Sec. 5.

2. FD Interpolation

This section recapitulates the theory of the FD interpolation and reviews the

properties of a truncated sinc, the FS, and Lagrange interpolation ¯lters.

2.1. LS sinc interpolation

The ideal frequency response of a variable FD ¯lter is given by

Hidealðej!TsÞ ¼ e�j!DTs

¼ e�j!ðDintþdÞTs ; ð1Þ

Maximally Flat and LS Co-Design of Variable FD Filters
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where Ts is the sample period and D is a positive real number that indicates the total

delay in number of samples of the digital FIR ¯lter impulse response with

D ¼ Dint þ d. Dint generally represents the integer delay throughout this paper (Dint

will vary for di®erent ¯lter lengths) and d is the fractional part of the delay in the

desired range [0,1]. ! 2 ½0; !p� is the normalized angular frequency and !p is a pa-

rameter de¯ning the passband edge frequency, !p � �. The ideal frequency response

of an all-pass FD interpolation ¯lter speci¯ed by !p ¼ � corresponds to the sinc

impulse response expressed as

hidealðnÞ ¼ sincðn�DÞ; n ¼ 0; 1; 2; . . . : ð2Þ
This is an IIR digital ¯lter with no recursive form and hence unrealizable. The

frequency response of the FIR ¯lter used to approximate the ideal frequency response

is given by

Ĥðej!TsÞ ¼
XN
n¼0

ĥðnÞe�j!nTs : ð3Þ

The frequency response error Eð!Þ is de¯ned as the di®erence between ideal

frequency response and the approximated frequency response.

Eð!Þ ¼ Hidealðej!TsÞ � Ĥðej!TsÞ : ð4Þ
The ¯lter coe±cient ĥðnÞ is determined by minimizing the following error function:

JðĥÞ ¼ Ts

2�

Z �=Ts

��=Ts

W ð!ÞjEð!Þj2d!

¼ Ts

2�

Z �=Ts

��=Ts

W ð!ÞjHidealðej!TsÞ � Ĥðej!TsÞj2d! ; ð5Þ

where W ð!Þ is a nonnegative weighting function. We assume a uniform weighting

function over the entire frequency band (all-pass case) throughout this paper.

According to Parseval's theorem, the error function can be rewritten as follows:

JðĥÞ ¼
X1
n¼0

jhidealðnÞ � ĥðnÞj2 : ð6Þ

The optimal ĥðnÞ in LS sense for a given FD d and ¯lter order N is expressed in

Eq. (7). Note that for variable FDs, a new set of ¯lter coe±cients should be computed

for each delay. However, for a given d, this optimal solution will outperform the

solution found by minimizing the error function over both the entire frequency range

and the entire FD range:

ĥðnÞ ¼ sincðn�DÞ ; 0 � n � N ;

0 ; otherwise :

�
ð7Þ

H. Li et al.
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2.2. Farrow structure

Farrow suggested that every ¯lter coe±cient of an FIR FD ¯lter could be expressed

as an Mth-order polynomial in the variable delay parameter d.10,29 The FS consists

of a set of constant coe±cient ¯lters called sub-¯lters, and the outputs of the sub-

¯lters are multiplied by di®erent powers of the variable FD parameter and then

added together to form the ultimate output of the variable FD interpolation. The

general FS is presented in Fig. 1, where CmðzÞ denotes the Z-transform frequency

response of the mth FS sub-¯lter. The ideal ¯lter response in Eq. (1) can be

approximated using the FS with the following frequency response:

HdðzÞ ¼
XM
m¼0

CmðzÞdm : ð8Þ

The ¯xed FIR sub-¯lters CmðzÞ approximate kth-order di®erentiators with frequency

responses given as follows:

CmðzÞ �
ð�j!TsÞm

m!
e�j!DintTs ; 0 � m � M ; ð9Þ

which is obtained by truncating the Taylor series expansion of Eq. (1). In the FS,

each sub-¯lter is an Nth-order FIR ¯lter as depicted in Fig. 2 and its Z-transform

frequency response is de¯ned as

CmðzÞ ¼
XN
n¼0

CmðnÞz�n ; 0 � m � M ; ð10Þ

where CmðnÞ denotes the nth coe±cient of the mth sub-¯lter. The coe±cient matrix

is given as follows:

C ¼

CMðNÞ � � � C1ðNÞ C0ðNÞ
CMðN � 1Þ � � � C1ðN � 1Þ C0ðN � 1Þ

..

. . .
. ..

. ..
.

CMð0Þ � � � C1ð0Þ C0ð0Þ

0
BBBB@

1
CCCCA : ð11Þ

In particular, the ¯rst sub-¯lter has an all-pass ¯ltering characteristic with a unit

pulse given by

C0ðzÞ ¼ e�j!DintTs ;

C0ðnÞ ¼ �ðnÞ : ð12Þ

x(n)

CM(z) CM-1(z) C2(z) C1(z)
d d d d

y(n)

Fig. 1. The general FS with adjustable FD d and C0ðzÞ ¼ 1.

Maximally Flat and LS Co-Design of Variable FD Filters
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The di®erentiators are realized by making CmðnÞ symmetrical or anti-symmetrical

for even or odd n, which is also bene¯cial in terms of implementation complexity. The

impulse response of the FS is expressed as

hdðnÞ ¼
XM
m¼0

CmðnÞdm; 0 � n � N : ð13Þ

The main advantage of the FS is that all sub-¯lter coe±cients are ¯xed, the only

changeable parameter is the FD d, which leads to a less computation intensive

implementation. The whole ¯lter structure is pipelined in Fig. 2 to lower the com-

putation intensity during a single clock cycle, therefore allowing the increase of the

maximal clock frequency.

2.3. Lagrange interpolation

The Lagrange interpolator is also known as a maximally °at FIR fractional-sample

delay system, meaning that all the derivative terms in the Taylor series expansion of

the frequency response error are zeroed around dc (z ¼ 1). Therefore, the Lagrange

interpolation is very accurate at low frequencies and is a widely used method in signal

processing algorithms. The coe±cients of anNth-order Lagrange interpolator for FD

can be expressed in the following way:

hLðnÞ ¼
YN
k¼0
k 6¼ n

D� k

n� k
; 0 � n � N : ð14Þ

CM(N)

CM(N-1)

X(0) X(1)

d

CM(0)

xin

yout

Z
-1

Z
-1

Z
-1

Z
-1

Z
-1

Z
-1

Z
-1

C1(N)

C1(N-1)

C1(0)

Z
-1

Z
-1

Z
-1

Z
-1

Z
-1

Z
-1

Z
-1

C0(N)

C0(N-1)

C0(0)

Z
-1

Z
-1

Z
-1

Z
-1

Z
-1

Z
-1

Z
-1

Z
-1

Z
-1

Z
-1

Z
-1

Z
-1

Z
-1

Z
-1 Z

-1

Fig. 2. The pipelined FS for a polynomial-based Lagrange interpolation ¯lter, and this structure works

for both even and odd orders.
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From the Lagrange interpolation formula, the output of the Lagrange interpolation

is the delayed input sample for an integer delay D, i.e., no approximation error is

made in this case. The coe±cient CmðnÞ of the Farrow-structured Lagrange inter-

polator can be obtained from the inverse of the N �N Vandermonde matrix V �1,

where each row represents the sub-¯lter CmðzÞ.
We can compute the value of the magnitude response of the Lagrange interpo-

lator at ! ¼ �. This value is not equal to unity except for some very special cases

(when the FD is zero). The overall magnitude response deviates from the ideal

magnitude of unity as the normalized angular frequency ! moves away from the

zero frequency and approaches �. This deviation becomes even worse when the FD

approaches 0.5, the worst case. The truncated Lagrange interpolator can be intro-

duced to mitigate the magnitude response deviation at high frequencies by

sacri¯cing passband °atness.28

2.4. Performance metrics

To compare the FD approximation of di®erent interpolation ¯lters, the frequency

response error and the MSE are evaluated as performance metrics. The frequency

response error is de¯ned in Eq. (4) and the MSE is de¯ned as

MSE ¼ 1

N1

XN1

i¼1

ðYi � YiÞ2 ; ð15Þ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Fractional delay (samples)

0

0.02

0.04

0.06

0.08

0.1

0.12

rorre erauqs nae
M

N = 11, L = 11, Lagrange
N = 11, L = 21, Truncated FS
N = 11, L = 31, Truncated FS
N = 11, L = 41, Truncated FS
N = 11, L = 51, Truncated FS
N = 11, L = 61, Truncated FS
N = 11, L = 71, Truncated FS

Truncated sincN = 11,

Fig. 3. MSE curves of truncated Lagrange interpolation ¯lters of order N and di®erent prototype ¯lter

orders L using the FS.
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where N1 is the number of samples, Ŷi and Yi are the interpolated sample and the

ideal sample with normalized power, respectively. The MSE of the truncated

Lagrange interpolator increases when d approaches 0.5, as presented in Fig. 3.

L represents the prototype ¯lter order described in Ref. 28.

3. Combined Filter Structure

As described in Ref. 30, to compensate the degradation of the Lagrange interpolation

at d ¼ 0:5 and obtain a low level of MSE over the whole range of d, a cascaded sinc-

Farrow ¯lter structure is ¯rst introduced. The block diagram of this cascaded ¯lter

structure is depicted in Fig. 4. Once the variable delay d approaches 0:5, the branch

H1ðzÞ becomes active and the new FD ðd� 0:5Þ is fed to the FS. TheH0ðzÞ andH1ðzÞ
represent the frequency response of the truncated sinc at d ¼ 0 and d ¼ 0:5,

respectively.

As shown in Fig. 5, at d ¼ 0:5, the MSE of the cascaded sinc-Farrow ¯lter exhibits

a minimal value that is mainly determined by the order of the sinc interpolation ¯lter

(H0ðzÞ and H1ðzÞ have the same ¯lter order N as the FS), because, as presented in

Fig. 3, there is no MSE caused by the Lagrange interpolation at d ¼ 0. By properly

switching the outputs between these two ¯lter branches, the overall MSE can be

reduced. The active ranges of H1ðzÞ are indicated in Fig. 5, which are determined by

the MSE values of the cascaded interpolation ¯lters H0ðzÞHdðzÞ and H1ðzÞHdðzÞ.
Note that the ¯rst sub-¯lter C0ðzÞ is equal to 1 for all delay values in FS, as

presented in Fig. 1 and Eq. (12). Thus, the dual form of the cascaded ¯lter structure,

i.e., Farrow-sinc can be used and the ¯rst sub-¯lter C0ðzÞ can be substituted byH1ðzÞ
without having to change the parameter d.30

The orders of the FS and H1ðzÞ are ¯rst kept equal for simplicity. The delay line

represented by H0ðzÞ is inherently included in the pipelined structure (referred to

Fig. 2). When the FD d approaches 0:5, the deviation �hðnÞ of the Lagrange in-

terpolation from the sinc-interpolation (both ¯lters at d ¼ 0:5) is added to the col-

umn C0ðnÞ of the FS ðN þ 1Þ � ðM þ 1Þ coe±cient matrix. This yields a new column

C 0
0ðnÞ. Thus, when d approaches 0.5, the coe±cients should be switched from C0ðnÞ

to C 0
0ðnÞ and the update of the FD to ðd� 0:5Þ is no longer required. The calculation

H0(z)

H1(z)

X(z)
Hd(z)

Farrow

Truncated sinc
d

H0(z)X(z)

H1(z)X(z)

1

2

Y(z) = H0(z)Hd(z)X(z)

    or = H1(z)Hd(z)X(z)

Fig. 4. The cascaded sinc-Farrow ¯lter structure.
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for C 0
0ðnÞ is expressed as follows:

�hðnÞ ¼ sincðn�Dint � dÞjd¼0:5 � hd¼0:5ðnÞ ; ð16Þ
C 0

0ðnÞ ¼ C0ðnÞ þ�hðnÞ ; 0 � n � N ; ð17Þ
where hd¼0:5ðnÞ is the Farrow-structured Lagrange FD interpolation ¯lter at d ¼ 0:5

(referred to Eq. (13)) and C0ðnÞ is the time-domain impulse response of the sub-¯lter

C0ðzÞ (referred to Eq. (12)).

It is easily noted that this Farrow-sinc ¯lter bank structure (denoted as \C0ðzÞ
FS" in Fig. 5) has the same MSE value as the cascaded sinc-Farrow ¯lter structure at

d ¼ 0:5. However, the remarkable aspect of this Farrow-sinc structure is that the

MSE value starts decreasing when d deviates from 0:5 as illustrated in Fig. 5 because

the remaining sub-¯lters of FS compensate the FD approximation error. Therefore,

the useful delay range between the two intercept points is widened compared to the

cascaded sinc-FS at the same implementation complexity. It should be pointed out

that the Lagrange ¯lter has good FD approximation when d is far from 0:5, even for

low ¯lter orders. This allows us to jointly optimize the order of the Farrow-structured

Lagrange ¯lter and H1ðzÞ in order to achieve a superior performance. The design

procedure is slightly modi¯ed for the joint optimization. Assuming that the order

of H1ðzÞ is now N þ 2K. The FS of order N is ¯rst truncated from the prototype

FS of order L. Second, the Farrow ðN þ 1Þ � ðM þ 1Þ coe±cient matrix is extended

to a ðN þ 1þ 2KÞ � ðM þ 1Þ matrix by adding K zeros above and below the

original Farrow coe±cient matrix, which is nothing else than pipelining the signal.

Hence, Eqs. (16) and (17) are again applicable. The obtained coe±cient matrix is

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Fractional delay (samples)

0

0.02

0.04

0.06

0.08

0.1

0.12

rorre erauqs nae
M

H1(z) active range 
N=11, L= 41 cascaded FS

N = 11, L = 11, Lagrange
N = 11, L = 11,
N = 11, L = 11, Cascaded FS
N = 11, L = 41, Truncated FS
N = 11, L = 41,
N = 11, L = 41, Cascaded FS
N = 11, L = 71, Truncated FS
N = 11, L = 71,
N = 11, L = 71, Cascaded FS

C0(z) FS

C0(z) FS

C0(z) FS

H1(z) active range N=11, L= 41 C0(z) FS

Fig. 5. MSE curves of combined Farrow ¯lter structure of order N ¼ 11 and K ¼ 0.
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expressed as follows:

C 0 ¼

0 � � � 0 �hðN þ 2KÞ
..
. . .

. ..
. ..

.

0 � � � 0 �hðN þK þ 1Þ
CMðNÞ � � � C1ðNÞ C0ðNÞ þ�hðN þKÞ

CMðN � 1Þ � � � C1ðN � 1Þ C0ðN � 1Þ þ�hðN þK � 1Þ
..
. . .

. ..
. ..

.

CMð0Þ � � � C1ð0Þ C0ð0Þ þ�hðKÞ
0 � � � 0 �hðK � 1Þ
..
. . .

. ..
. ..

.

0 � � � 0 �hð0Þ

0
BBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCA

: ð18Þ

The optimization map for di®erent orders of Farrow-structured Lagrange ¯lters

and H1ðzÞ ¯lters with L ¼ N þ 30 is shown in Fig. 6 where the optimal ¯lter orders

can be chosen for a given MSE performance requirement. In addition, this optimi-

zation map reveals that Lagrange interpolation performance only increases slightly

with increasing ¯lter order, while the order of H1ðzÞ has signi¯cant in°uence.
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Fig. 6. Optimization map showing MSE performance with di®erent orders of Lagrange and H1ðzÞ ¯lters.
The values represent the worst MSEs over the whole FD range when the corresponding Lagrange and
H1ðzÞ ¯lter orders are used in the combined ¯lter structure \C0ðzÞ FS".
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An example of optimal ¯lter orders is indicated on the optimization map. The main

advantage of using the combined ¯lter structure lies in the fact that, when jointly

optimizing the two ¯ltering blocks, the computational complexity to generate

practically the same ¯ltering performance can be drastically decreased.

4. Proposed Interpolation Filter

In this section, we propose a design technique in which the overall ¯lterHdðzÞ of FS is

modi¯ed to improve the FD interpolation at d ¼ 0:5. This technique is based on the

Farrow-structured Lagrange interpolation (maximally °at) and the truncated sinc

(optimal in LS error for a given d, ¯lter order N and !p ¼ �).

4.1. Desired interpolation properties

Both the truncated sinc and the Lagrange interpolation are very accurate when the

FD delay d equals 0 or 1. Because the output of the Lagrange interpolation at integer

delays is the delayed discrete input sample itself, no FD approximation error is made

in this case. This high accuracy at integer delays should be preserved in the inter-

polation ¯lter design.

As expressed in Eq. (12), the ¯rst sub-¯lter C0ðzÞ possesses the all-pass transfer

characteristic (i.e., its cut-o® frequency exactly equals �). Further, note that in

Eq. (8), the sub-¯lter CmðzÞ is weighted with dm. Since d is limited in the FD range

½0; 1�, the contribution of CmðzÞ for 1 � m � M to the overall transfer function is

certainly less than that of C0ðzÞ. Moreover, the greater the sub-¯lter index m is, the

less the in°uence of CmðzÞ is. Thus, it is preferred for wideband interpolation design

that the correction term �hðnÞ is introduced in other sub-¯lters instead of C0ðzÞ.
As discussed in Sec. 2.1, in the LS error sense, the truncated sinc is optimal over

the entire band 0 � ! � � for a given FD d and FIR ¯lter order N . It is also desirable

to achieve these optimal LS errors for variable FD d with a single FS.

4.2. Maximally °at and LS co-design

Because the ¯rst two design considerations in Sec. 4.1 are the properties of the FS-

based Lagrange interpolation, we ¯rst improve the FD interpolation performance at

d ¼ 0:5 in the LS error sense. The correction term for the chosen index m1 and

corresponding sub-¯lter Cm1
ðzÞ should be adapted as follows:

�hd¼0:5ðnÞ ¼ sincðn�Dint � dÞjd¼0:5 � hd¼0:5ðnÞ ;
�hm1

ðnÞ ¼ �hd¼0:5ðnÞ
dm1

����
d¼0:5

;

C 0
m1
ðnÞ ¼ Cm1

ðnÞ þ�hm1
ðnÞ ; 0 � n � N ;

W�hðm1; dÞ ¼ d

0:5

� �
m1

; 1 � m1 < M ;

ð19Þ
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where �hd¼0:5ðnÞ is the deviation of the Lagrange interpolation from the trun-

cated sinc at d ¼ 0:5. W�hðm1; dÞ is the weight function of �hd¼0:5ðnÞ in the

overall impulse response. �hm1
ðnÞ is the correction term which should be adapted

for the new sub-¯lter impulse response C 0
m1
ðnÞ. When d decreases from 0.5 to 0,

the weight of �hd¼0:5ðnÞ starts decreasing accordingly. In this way, the contri-

bution of �hd¼0:5ðnÞ to the overall impulse response becomes lower. This contri-

bution will even vanish rapidly when the sub-¯lter index m1 is large. Moreover, for

d ¼ 0, this correction term has no more in°uence, regardless of the chosen sub-

¯lter index m1, and the output of the interpolator is then the delayed input

sample itself. As discussed before, no approximation error is made at d ¼ 0 thanks

to the all-pass characteristic of C0ðzÞ. Denote the new equivalent impulse response

as h 0
dðnÞ that is obtained by applying the new coe±cient matrix denoted as C 0

mðnÞ
to Eq. (13).

However, when d increases from 0.5 to 1, the weight increases exponentially,

leading to a large approximation error. The same approach can be applied to improve

the interpolation at an intermediate FD delay of, e.g., d ¼ 0:8. Attention should be

paid when choosing the second sub-¯lter index m2. m2 should be greater than m1,

otherwise, the improvement of the FD approximation at d ¼ 0:5 will be contami-

nated. The second correction term is calculated based on the previous modi¯ed

impulse response h 0
dðnÞ and the truncated sinc at d ¼ 0:8. Denote now the new

obtained impulse response and the new coe±cient matrix as h 00
dðnÞ and C 00

mðnÞ,
respectively:

�hd¼0:8ðnÞ ¼ sincðn�Dint � dÞjd¼0:8 � h 0
d¼0:8ðnÞ

¼ sincðn�Dint � dÞjd¼0:8 � hd¼0:8ðnÞ
��hd¼0:5ðnÞW�hðm1; d ¼ 0:8Þ ; ð20Þ

�hm2
ðnÞ ¼ �hd¼0:8ðnÞ

dm2

����
d¼0:8

;

C 00
m2
ðnÞ ¼ C 0

m2
ðnÞ þ�hm2

ðnÞ ; 0 � n � N ;

W�hðm2; dÞ ¼ d

0:8

� �
m2

; m1 < m2 < M :

ð21Þ

Due to the introduction of these extra correction terms, the output of the FD

interpolation at d ¼ 1 is no longer the delayed input sample. This approximation

error can be further compensated by introducing the third correction term for the FD

interpolation at d ¼ 1. We choose the third sub-¯lter index m3 ¼ M so that this

correction term has the least in°uence on the previous correction terms while

maintaining zero approximation error at d ¼ 1. As described in Sec. 3, the ¯lter

orders and the length of the correction terms can be optimized. A similar coe±cient
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matrix as Eq. (18) can be obtained for this proposed ¯lter structure:

�hd¼1ðnÞ ¼ sincðn�DintÞ � h 00
d¼1ðnÞ ;

�hm3
ðnÞ ¼ �hd¼1ðnÞ

dm3

����
d¼1

;

C 000
m3
ðnÞ ¼ C 00

m3
ðnÞ þ�hm3

ðnÞ ; 0 � n � N ;

W�hðm3; dÞ ¼ d

1

� �
m3

; m3 ¼ M :

ð22Þ

4.3. Performance evaluation

As shown in Fig. 7, compared to the MSE values of the combined ¯lters (cascaded or

\C0ðzÞ FS"), the MSE of the proposed ¯lter is lower when d is approaching the

integer delays. For L ¼ 11, the MSE curve round d ¼ 0:5 is slightly tilted from that

of a truncated sinc due to the introduction of the second and third correction terms.

For L ¼ 41, this di®erence becomes negligible. This design technique removes the

requirement of switching between di®erent ¯lters required by combined ¯lters as

discussed in Sec. 3. The corresponding frequency response errors are depicted in

Fig. 8. Note that, the passband ripples of the truncated Lagrange, truncated sinc,

and proposed interpolation ¯lters are less when d is closer to integer delays as shown

in Fig. 8. As shown in Fig. 8(d), the requirement on high FD approximation accuracy

at d ¼ 1 is ful¯lled. When d ¼ 0:5, the frequency response error is bounded to the
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Fig. 7. MSE curves of proposed ¯lter structure of order N ¼ 11 and K ¼ 0.
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Fig. 8. Frequency response error of di®erent FD interpolation ¯lters at (a) d ¼ 0:2, (b) d ¼ 0:5, (c)
d ¼ 0:8 and (d) d ¼ 1 with ¯lter orders ðN;KÞ ¼ ð11; 0Þ and parameters fm1;m2;m3g ¼ f1; 4; 11g.
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error of the truncated sinc as shown in Fig. 8(b). Because the maximal °atness is

traded-o® for the extended bandwidth, the MSE approaches the optimum for a given

FD d and ¯lter order N . The MSE performance with optimized ¯lter orders is pre-

sented in Fig. 9 and the corresponding frequency response errors are presented in

Fig. 10. Note that we do not claim that the resulted combination of ¯lter orders and

the set fm1;m2;m3g is the optimum one (to this end, one needs to do extra research).

The degree of polynomial M and the ¯lter order N (M ¼ N for FS-based Lagrange)

are decreased and the ¯lter order of the correction term N þ 2K is increased, leading

to improvements in FD approximation: less passband ripple, more bandwidth and

low MSE level over the entire FD range. In Fig. 10(a), the \C0ðzÞ FS" interpolation

¯lter has notable degradation at d ¼ 0:2 compared to the proposed ¯lter. At d ¼ 0:5,

the di®erence among truncated sinc \C0ðzÞ FS" and the proposed ¯lters is negligible

since both \C0ðzÞ FS" and the proposed ¯lters are corrected by introducing the

truncated sinc of d ¼ 0:5 as correction term into their FSs.

4.4. Relation to Lagrange interpolation and combined ¯lter

The impact of these correction terms to the overall impulse response of Lagrange

interpolation is given by

�gðn; dÞ ¼ �hm1
ðnÞdm1 þ�hm2

ðnÞdm2 þ�hm3
ðnÞdm3 ; 0 � n � N : ð23Þ

The proposed interpolation ¯lter is more accurate in the LS error sense than the

Lagrange interpolation by introducing the truncated sinc as correction terms into

the FS. The proposed method also provides other optimization parameters
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,71= N cnis detacnurT

Fig. 9. MSE curves of proposed ¯lter structure with ¯lter order ðN;KÞ ¼ ð7; 5Þ and parameters
fm1;m2;m3g ¼ f1; 4; 7g.
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fm1;m2;m3g. By carefully choosing these parameters, the maximal °atness can be

traded-o® for lower MSEs or more bandwidth in the magnitude response and group

delay as shown in Fig. 11. When !p < �, a new optimal FD interpolation ¯lter can be

obtained using the LS design criterion and similar design techniques can be applied

to trade-o® the maximal °atness in Lagrange for lower MSE. However, it should be

pointed out that, for !p < �, the (truncated) Lagrange FD interpolation has better

performance than in the all-pass case, since the FD interpolation degradation at high

frequencies can be located in the \don't care band" speci¯ed by ½!p; ��. Compared to

the cascaded or the combined ¯lter, the burdensome switching between di®erent

¯lters is removed in the proposed ¯lter structure. Besides, a superior performance is

achieved in the LS sense when d is close to 0 or 1. Moreover, the proposed ¯lter

approaches the optimal MSE for all variable FDs, however, as mentioned in Sec. 2.1,

the truncated sinc ĥðnÞ is only optimal for a given d, and hence for variable d, a new

FD interpolation ¯lter has to be implemented each time.

4.5. Implementation cost

The computational cost of FS-based Lagrange with ¯lter order N is NðN þ 1Þ þN

multiplications andN 2 þN additions per output sample. Note that C0ðzÞ is equal to
1 for all delay values in the original FS. Thus, the implementation cost of C0ðzÞ is
discarded. In Table 1, the computational complexity of di®erent implementations is
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Fig. 10. Frequency response error of di®erent FD interpolation ¯lters with optimized ¯lter orders

ðN;KÞ ¼ ð7; 5Þ and parameters fm1;m2;m3g ¼ f1; 4; 7g at (a) d ¼ 0:2 and (b) d ¼ 0:5.
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compared in terms of the number of multiplications (Mul) and additions (Add).

These results correspond to Figs. 8 and 9, respectively. �HðzÞ represents the extra

correction term introduced. When �HðzÞ has the same ¯lter order of the FS with

ðN;KÞ ¼ ð11; 0Þ, a superior performance is achieved by the proposed ¯lter structure

even at lower implementation cost. The implementation cost is quadratically re-

duced by lowering the order of the FS. In addition, the constant coe±cient multi-

plication in the FS can be e±ciently implemented on FPGA without dedicated

multipliers (e.g., DSP48), instead, only a limited number of shifters and adders are

required by using the CSD representation. The utilization of the CSD representation

can dramatically reduce the number of nonzero bits representing the constant

coe±cient, therefore reducing the amount of calculation.

Table 1. Computational complexity comparison for the combined ¯lter and the proposed

structure, only counting the number of multipliers and adders.

C0ðzÞ FS structure

ðN;KÞ ¼ ð11; 0Þ
Proposed structure

ðN ;KÞ ¼ ð11; 0Þ
C0ðzÞ FS structure

ðN;KÞ ¼ ð7; 5Þ
Proposed structure

ðN;KÞ ¼ ð7; 5Þ
MulþAdd MulþAdd MulþAdd MulþAdd

�HðzÞ 12þ 11 0þ 0 18þ 17 30þ 27

Farrow 143þ 132 143þ 132 63þ 56 63þ 56

Total 155þ 143 143þ 132 81þ 73 93þ 100
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Fig. 11. Frequency response error and group delay of di®erent sets of fm1;m2;m3g. The ¯lter order

fN;K;Lg ¼ f11; 0; 41g and d ¼ 0:2 are used.
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5. Conclusion

This paper has proposed a maximally °at and LS co-design method of a variable FD

interpolation ¯lter. This method introduces the truncated sinc as correction terms

into the FS of a Lagrange interpolation ¯lter. It has been shown that the proposed

structure not only features the advantages of the pipelined FS in terms of variable

FD interpolation and high throughput, but also enhances the FD approximation.

It is shown in the example designs that an overall MSE of approximately 2% is

achieved at lower implementation cost with the proposed structure compared to 4%

MSEwith a traditional implementation. The considerably lower level ofMSE over the

whole FD range implies that this proposed structure outperforms both the truncated

Lagrange interpolation with an FS and the cascaded or combined structure. These

features are bene¯cial to real-time FPGA implementation for sample rate conversion,

digital beamforming and symbol synchronization in wideband SDR systems.
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