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Abstract—This paper shows how to estimate an extended
polynomial matrix description of a non-linear MIMO system.
Both linear and non-linear impulse responses are obtained
by transmitting pseudo random binary sequence (PRBS) test-
patterns and can be easily separated thanks to the shift-and-add
property of PRBS. Further on, a method to equalize such non-
linear systems based on this extended polynomial matrix and
the result is compared with a linear zero-forcing equalizer for
different channel impairments and in a VPI simulation. This
proves the presented approach is suited to cancel self-phase
modulation in coherent optical communication systems.

I. INTRODUCTION

Communication channels are pushed to maximize the data
throughput, which is usually limited by the finite frequency
spectrum of these mediums. To overcome this, new communi-
cation systems tend towards modulation schemes with higher
spectral efficiency and/or stretch the channel bandwidth with
equalizers. Therefore, channel estimation and compensation
are of crucial importance. Not only are modern communication
channels browbeaten to transfer more data, multiple channels
are created to establish multiple data streams. Polarization
division multiplexing (PDM) and space-division multiplexing
(SDM) technologies are used in multiple-input multiple-output
(MIMO) systems to achieve multiple parallel data streams to
sustain the capacity growth [1]. Along with linear intersymbol
interference (ISI) and co-channel interference (CCI), nonlinear
mixing effects are also present, making the impulse responses
of MIMO systems with nonlinear effects complicated. For
example, the capacity of optical MIMO channels is rapidly
approaching the capacity limit imposed by these nonlinear
fiber effects [2] [3].

Channel estimation of MIMO systems is already widely
used and numerous algorithms are available [4], [5]. Typically,
the estimation is described using polynomial matrices. To
improve a MIMO system, the orthogonal eigenvectors of the
polynomial matrix can be used to achieve multiple virtual
independent channels with no crosstalk. To do so, polynomial
matrix singular value decomposition (PMSVD) can be used to
decompose a MIMO channel matrix, which can then be used
to recover the transmitted signals corrupted by the channel
interference (CI) at the receiver [6]. However, PMSVD is
computationally heavy and will only result in a linear com-
pensation.

To compensate nonlinear effects, nonlinear impulse re-
sponses, described with Volterra or power series should be

canceled. However, identification of the coefficients is com-
putationally burdensome.

In this paper, Pseudo Random Bit Sequence (PRBS), also
called binary maximum length sequences (MLS) have been
used as excitation to estimate, by cross correlation, the linear
impulse responses of a MIMO channel. These impulse re-
sponses are used to build the polynomial matrix. However, the
cross correlation of the PRBS stream also reveals additional
impulse responses that can be attributed to nonlinear channel
effects and that can be used to extend the polynomial matrix.
This results in a more accurate channel model. Using this
extended polynomial matrix, a heuristic method is presented
to equalize a nonlinear MIMO system.

The structure of this paper is as follows: section II in-
troduces an extended version of a polynomial matrix which
includes extra elements relating to the non-linear impulse
response. Furthermore, it is shown how all the elements of this
matrix can be estimated based on the transmission of pseudo
random bit sequences. Two important properties of these
sequences allow to extract the different contributions from the
received signals. In section III, a method to equalize a non-
linear MIMO system based on the extended polynomial matrix
is proposed and to verify this method, different non-linear
communication links are compensated in sections IV and V
using the proposed non-linear equalizer. Finally, conclusions
are drawn in section VI.

II. POLYNOMIAL MATRIX REPRESENATION OF A MIMO
CHANNEL

Given a MIMO link with nT (number of transmitters) inputs
and nR (number of receivers) outputs, a nT ×nR polynomial
matrix C(Z) can be used to describe the channel. Fig. 1
shows an example of a 2 × 2 MIMO system. Each element
of the matrix C(Z) is a polynomial in the Z-domain. In this
paper the Z-polynomials are translated into vector quantities to
simplify the mathematical processing. The polynomial matrix
can easily be extended to take non-linear terms into account.
For example, Eq. (1) shows a polynomial matrix of a 2 × 2
MIMO system but extended with the product of the two inputs.[

y1
y2

]
=

[
C11 C12 C13

C21 C22 C23

]
∗

 x1
x2
x1x2

 (1)

The mathematical operator ∗ represents the convolution.
Eq. (1).
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Fig. 1: Representation of a polynomial matrix in a MIMO
system.

A. Obtaining Impulse Response using a PRBS

To determine the different impulse responses constituting
the channel matrix C(Z), a pseudo random binary sequence
(PRBS) is used. A PRBS bit stream is formed using a linear
feedback shift register of length m, given a proper feedback
polynomial, a maximum length sequence, with period N =
2m − 1 can be obtained. If the PRBS is mapped to non-
return-to-zero (NRZ) {−1,+1} symbols, the autocorrelation
is maximal and results in N when the streams are aligned
and equals -1 elsewhere (see Eq. (2)). For creating a perfect
Kronecker delta with an autocorrelation function, we refer
to [7]. This makes it a convenient stimulus to calculate the
impulse response of a channel. When a PRBS (u(n)) is sent
through a channel and the cross correlation of the received
PRBS (uch(n)) with an undistorted PRBS reveals the channel
impulse response hch(n). This is summarized in Eq. (3)-(5)

Ruu(l) =

N∑
n=1

u(n)u(n− l) =

{
N l = 0

−1 l 6= 0
(2)

uch(n) =

∞∑
l=−∞

hch(l)u(n− l) (3)

hch(l) =

N∑
n=1

uch(n)u(n− l) (4)

= uch(n) ∗ u(−n) (5)

B. PRBS’ Shift and Add Property

A PRBS sequence has the property that the modulo-2
summation or ‘xor’ operation (denoted with ⊕) of a PRBS
with a time-shifted copy of itself yields again the same PRBS
but with a different time-shift. This is commonly known as
the shift-and-add property [8] and is mathematically expressed
in Eq. (6). If non-return-to-zero (NRZ) {−1,+1} symbols are
used, a modulo-2 sum of two symbols equals the inverse of the
product of the two symbols (see Eq. (8)). Hence, multiplying
two time-shifted versions of an NRZ modulated PRBS results
in the same PRBS but with yet another time-shift. The time-
shift or delay of the resulting PRBS depends only on the time-
shift of the copy with respect to the original PRBS. Therefore,
we introduce a new function φ(.) in Eq. (7) to indicate the
delay of the resulting PRBS with respect to the original PRBS.
This φ(.) function can be determined using Eq. (9), where we
use a discrete logarithm in the finite Galois field of 2m. This
is the same finite field used to construct the PRBS.

u(l) = u(n)⊕ u(n− k) (6)
u(n− φ(k)) = u(n)⊕ u(n− k) (7)

= −u(n)u(n− k) (8)

φ(k) = logGF2m(1 + xk) (9)

This property can be extended for three or even more PRBS
sequences, which is summarized in Eq. (10) and Eq. (11).

u(n1)u(n1 + n2)u(n1 + n2 + n3) = u(n1 + φ(n2, n3))
(10)

φ(n2, n3) = logGF2m(1 + xn2 + xn2+n3) (11)

C. Estimating the non-linear polynomial channel matrix of a
MIMO system

Using the autocorrelation and the sum-and-add properties of
a PRBS, all the elements of the channel matrix represented in
Eq. (1) can be calculated. To do so, a PRBS stream u(n) and
a time-shifted version u(n− k) are applied at the input of the
channel (x1 and x2). Thanks to the shift-and-add property of
the PRBS, the product of the two inputs yields a third PRBS
u(n− φ(k)). This is summarized in Eq. (12)[

y1
y2

]
=

[
h11 h12 h13
h21 h22 h23

]
∗

 u(n)
u(n− k)

u(n− φ(k))

 (12)

A cross correlation with the original PRBS signals allows
to estimate the different impulse responses. For example,
calculating the cross correlation between u(n) and y2 will
result in:

(y2 ∗ u(−n))(l) = h21(l) + h22(l − k) + h23(l − φ(k))
(13)

Hence, this results in the sum of the three impulse responses,
but each centered at a different sample moment. If the temporal
resolution of the PRBS stream is sufficient, the different
impulse responses can be easily extracted.

III. EQUALIZING IMPULSE RESPONSE

The inverse channel impulse response can be used as a
zero forcing equalizer. Thus, cascading the channel impulse
response with the inverse channel impulse response results
into a Kronecker Delta δ(n) impulse response (expressed in
Eq. (14)).

δ(n) = hequalizer(n) ∗ hchannel(n) (14)

This equalizing polynomial matrix can be constructed using
the following method. Fig. 2a shows a nonlinear 2 × 2
MIMO system. From this, a simplified channel model with the
extra non-linear terms is constructed (Fig. 2b), following the
estimation method highlighted in section II-B. To equalize the
channel, the channel matrix needs to be inverted. However,
this is not possible due to our construction process, as the
channel matrix is not square (2 × 3). To alleviate this, the
matrix is extended and a virtual output signal equal to the
best linear approximation of the product of y1 and y2 (denoted
ỹ12) is added. Fig. 2c shows this. The mathematical derivation
Eq. (15) shows the terms that contribute to the product y1y2.
Other terms of y1y2 which do not have a x1, x2 or x12 are
neglected. Notice that x2 = 1 because x is a binary NRZ value
{−1,+1}.

The extended channel model is given by:

y1y2 = (h11 ∗ x1 + h12 ∗ x2 + h13 ∗ x12)︸ ︷︷ ︸
y1

× (h21 ∗ x1 + h22 ∗ x2 + h23 ∗ x12)︸ ︷︷ ︸
y2

(15)
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(c) 2x2 MIMO channel with equalizer.

Fig. 2: Graphical representation of the MIMO equalization
algorithm.

 y1y2
ỹ12

 =

 h11 h12 h13
h21 h22 h23

h12h23 + h13h22 h11h23 + h13h21 h11h22 + h12h21


︸ ︷︷ ︸

hch extend

∗

 x1
x2
x1x2


(16)

To equalize the channel the inverse of the extended channel
heq is calculated. Not that y12 represent the product of two
output signals. x̂1x̂2

 = heq

 y1y2
y12


The inverted polynomial matrix is computed in the frequency
domain given Eq. (17).

F (heq11) F (heq12) F (heq13)
F (heq21) F (heq22) F (heq23)
F (heq31) F (heq32) F (heq33)

 =

F (hideal) 0 0
0 F (hideal) 0
0 0 F (hideal)


 F (h11) F (h12) F (h13)

F (h21) F (h22) F (h23)
F (hch extend31) F (hch extend32) F (hch extend33)


(17)

IV. SIMULATION

The proposed equalizer is verified in Matlab. Different im-
paired 2×2 MIMO channels are constructed and are estimated
using a PRBS9 with feedback polynomial x9 + x5 + 1. A
delay of 110 symbols is chosen between the PRBSs of the
two inputs. The product of the PRBS and the delayed PRBS

at the input of the system creates a third PRBS with a delay of
316 symbols relative to the first PRBS stream φ(110) = 316
with φ(.) defined in Eq. (9). The outputs of the MIMO system
are cross-correlated with the perfect PRBS, to attain the raw
impulse response and a window function of 100 symbols
long is used as mask to filter out the specific elements of
the extended channel matrix shown in Eq. (16). The inverse
polynomial matrix is calculated with Eq. (17) and is used
to convolve with the received signal. In the simulations, two
real inputs are assumed, which can easily be displayed using
constellation points in a two-dimensional figure. Of course, it
is clear that all proposed techniques can be easily extended
towards higher dimensions.

In Table I the different simulated channel responses are
shown. The first column shows the received constellation
points, the second column shown the constellation points after
a linear zero-forcing equalizer and the third column shows
the constellation points after our proposed equalizer. It should
be noted that random data transmitted to construct these
constellation diagrams and not the PRBS9 sequence used to es-
timate the impulse responses. The simulation covers the most
common MIMO channel distortions. The first distortion shown
is a rotation, it can appear in single carrier modulation whereby
the QPSK constellation rotates depending on the receiver local
oscillator (LO) phase offset. This linear effect can be easily
compensated with a rotation matrix. The second distortion
comes from IQ mismatch. The third distortions are reflections
that cause inter-symbol interference (ISI), this can also be
compensated with a linear equalizer. A Trapezoidal constella-
tion (Non-linear I) is only possible with a non-linear channel,
the linear equalizer can not compensate the trapezoidal shape,
which is visible on the constellation diagram of the signal after
the linear equalizer. The fourth simulation transmits QPSK
symbols with an offset {0,0},{0,1},{1,0},{1,1} modulated on
a single carrier. The channel is strongly saturated (Non-linear
II), so that the {1,1} symbol is compressed and moved to the
origin. Only the proposed non-linear equalizer can place the
4 symbol on the correct coordinates. In the last simulation
an asymmetrical PAM4 eye is shown, this effect can occur
when sending PAM4 symbols through an optical link. Here
we use 2 independent PRBS streams to create the PAM4
symbols, one PRBS stream represent the most significant
bit (MSB) and the other the least significant bit (LSB), the
aforementioned algorithm can obtain the impulse response of
the MSB PRBS, the LSB PRBS, and the product of these two
streams. This information can be used to uniformly spread the
PAM4 symbols and optimize the 3 eyes to almost equal eye
height.

V. EXPERIMENTAL SIMULATION

EAM

EAM

90°
100 Km
SMF 28

90° 

Optical

Hybride

13 dBm
7 dBm

y1

y2

PRBS9 u(t-110Ts)

PRBS9 u(t)

Fig. 3: VPI simulation of coherent receiver, 100 Km fiber
cause self-phase modulation (SPM).



Received Linear EQ Proposed NL-EQ
Rotation

IQ imbalance

Reflection

Non-linear I

Non-linear II

Non-linear PAM4

TABLE I: Matlab simulation, to verify the proposed non-linear
equalizer, for the most come channel distortion effect.

The algorithm proposed in this paper can be used to describe
and compensate various non-linear complex channels. To il-
lustrate this in a more practical scenario, an optical experiment
performed in VPI is set up. The simulation consists of a
coherent transmitter constructed with EAMs and depicted in
Fig.3. Self-phase modulation (SPM) of the signal through the
fiber is one of the limited factors of the data throughput of a
coherent receiver [3]. To simplify the transmitter, asymmetric
QPSK symbols, namely {0,0},{0,1},{1,0},{1,1} are transmit-
ted. The QPSK symbols are made of two PRBS9 test-patterns,
the second has a delay of 110 symbols. The same method
is used, as described in Section IV. The PRBS test-patterns
modulate with an electro-absorption modulator (EAM) the In-
phase and Quadrature term of a continuous wave (CW) laser
light. The non constant envelop of the transmitted signal cause
a phase fluctuation in fiber, resulting in SPM which is a form
of AM-PM distortion. The fiber has a length of 100 Km and its
non-linear index n2 = 2.6E-20 m2

W , which is typical for SMF-
28. The light entering the fiber has a power of 7 dBm and is
modulated with a symbol rate of 1 GBaud. A scatter plot of
the received QPSK constellation is shown in Table II. A linear
equalizer is not capable of placing the received symbols on the
right coordinates. However, the proposed non-linear equalizer

can completely compensate the non-linearity.

Received Linear EQ Proposed NL-EQ

TABLE II: VPI simulation of coherent receiver, 100 Km fiber,
from left to right: the received QPSK constellation, distorted
by SPM, is shown, the linear equalized received constellation
and the received signal after the proposed non-linear equalizer.

VI. CONCLUSION

This paper described an algorithm to equalize non-linear ef-
fects in a MIMO system. First, it is shown that the polynomial
matrix describing a MIMO system can be extended to include
non-linear effects. Second, pseudo random bit sequences are
used to estimate the different elements constituting this ex-
tended polynomial matrix, and last, this estimated matrix is
used to equalize data received through the non-linear channel.
To show the validity of this approach, different impaired
channels are simulated in Matlab and compensated with both
a linear zero-forcing equalizer as well as with the proposed
equalizer. It was shown that for example saturation of an
unbalanced QPSK transmission could be compensated with
the proposed equalizer, while this is impossible with a linear
equalizer. Additional, a VPI simulation of a similar system is
performed. Again an unbalanced QPSK signal is transmitted,
but this time the distortion occurs due to self phase modulation.
The proposed equalizer can easily compensate this. As such,
it is shown that the method reported can be adjust or extend
to cover multiple non-linear effects.
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