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Abstract—This paper describes improvements in the Farrow
structured variable fractional delay (FD) Lagrange interpola-
tion. The main idea is to replace the first sub-filter of the
Farrow structure by a sinc-interpolation filter of half a sample
period to achieve a superior FD approximation in the vicinity
of half a sample period. Its primary advantages over classical
Farrow structured FD Lagrange interpolators are the lower
level of mean-square-error (MSE) over the whole FD range and
the reduced implementation cost. Design examples are included,
illustrating an MSE reduction of 50% compared to a classical
Farrow structured interpolator while the implementation cost is
halved.
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I. INTRODUCTION

In digital communication systems, the propagation delay

from the transmitter to the receiver is generally unknown at

the receiver. Hence, symbol timing must be derived from the

received signal. When designing a digital basedband receiver

on field programmable gate arrays (FPGAs), the received

signal is typically uniformly sampled at a fixed analog-to-

digital converter (ADC) clock. Thus, the timing error is a

fraction of the ADC sample period and can vary with time. The

timing adjustment must be done by fractional interpolation in

the digital domain before decoding the received signal.

Variable fractional delay (FD) interpolation filters have been

widely investigated for timing synchronization in all-digital

receivers since it is desired to realize the fractional interpo-

lation in an efficient way from the perspective of hardware

implementation [1], [2]. The Farrow structure (FS) can easily

accommodate adjustable fractional delays without the need of

changing the filter coefficients, lowering the implementation

complexity compared to alternatives such as on-line design or

storage of a large number of different impulse responses [3]–

[7]. Digital filters are usually divided into two classes: finite-

impulse-response (FIR) filters and infinite impulse response

(IIR) filters. In contrast to an IIR filter, there is no feedback

in a FIR filter, making it inherently stable. The FIR filters im-

plemented on FPGA usually use a series of delays, multipliers,

and adders to generate the filter outputs. Thus, a FIR filter can
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Fig. 1. The general Farrow structure with adjustable fractional delay d and
C0(z) = 1.

be easily pipelined to increase the maximal clock frequency

and the effective throughput, and the maximal allowable clock

freqeuncy of a FIR filter is then limited to the speed of the

FPGA building blocks. In this work, variable FD Lagrange

interpolation filters are realized as a FS [8] with the pipelined

structure, which can be very attractive for wideband all-digital

receiver implementations on FPGA.

However, the approximation of Lagrange FD interpolation

filters is heavily degraded when the FD approaches 0.5Ts,

where Ts is the sample period. Our observations show that

if the first sub-filter of a Farrow structure is replaced by a

sinc-interpolation filter for 0.5Ts, a superior approximation of

an ideal FD interpolation e−jωdTs can be obtained with lower

implementation cost, where d is the fractional delay (usually

0 ≤ d ≤ 1).

II. FRACTIONAL DELAY LAGRANGE INTERPOLATION

The Lagrange interpolator is also known as a maximally flat

FIR fractional-sample delay system. Lagrange interpolation is

a widely used method in signal processing algorithms and

is very accurate at low frequencies. The coefficients of an

N th-order Lagrange interpolator for fractional delay d can be

expressed in the following way

hL(n) =

N∏

k=0
k �=n

D − k

n− k
, for n = 0, 1, 2, ..., N (1)

where D is the real number that corresponds to the delay d
from the beginning (n = 0) of the impulse response (see [8]).

Farrow suggested that every filter coefficient of a FIR FD

filter could be expressed as an M th-order polynomial in

the variable delay parameter d [4], [9]. The general Farrow

structure is presented in Fig. 1, where Cm(z) denotes the
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Fig. 2. The pipelined Farrow structure for a polynomial-based Lagrange
interpolation filter, this structure works for both even and odd order.

Z-transform frequency response of the Farrow structure sub-

filter. Each sub-filter is a N th-order FIR filter as depicted in

Fig. 2 and its Z-transform frequency response is defined as

Cm(z) =

N∑

n=0

Cm(n)z−n, for m = 0, 1, 2, ...,M (2)

where Cm(n) denotes the n-th coefficient of the m-th sub-

filter. The impulse response realized by the Farrow structure

can be expressed as follows

hd(n) =
M∑

m=0

Cm(n)dm, for n = 0, 1, 2, ..., N (3)

The coefficient Cm(n) of the Farrow structured Lagrange

interpolator, can be obtained from the inverse of the N × N
Vandermonde matrix V −1, where each row represents the sub-

filter Cm(z). The main advantage of the Farrow structure is

that all the sub-filter coefficients are fixed, the only changeable

parameter is the fractional delay d, which leads to a less com-

putation intensive implementation. The whole filter structure

is pipelined in Fig. 2 to lower the calculation intensity during

a single clock cycle, therefore allowing the increase of the

maximal clock frequency.

III. CASCADED FILTER STRUCTURE

To evaluate the design accuracy, the mean-square-error

(MSE) is introduced. The MSE is mathematically defined as

MSE =
1

N1

N1∑

i=1

(Ŷi − Yi)
2 (4)

where N1 is the number of samples, Ŷi and Yi are the inter-

polated sample and the ideal sample with normalized power

respectively. The MSE of the truncated Lagrange interpolator

increases when the FD approaches 0.5Ts (see Fig. 4(a), L
represents the prototype filter order) [10]. To compensate

this degradation and obtain a low level of MSE over the

whole range of d, a cascaded sinc-Farrow filter structure is

introduced, as depicted in Fig. 3. Once the variable delay

d approaches 0.5Ts, the branch H1(z) becomes active and

the new FD (d − 0.5)Ts is fed to the Farrow structure. The
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Fig. 3. The cascaded sinc-Farrow filter structure. The switching between
H0(z) and H1(z) is dependent of the intercepts and the hysteresis.

h0(n) and h1(n) represent the impulses response of H0(z)
and H1(z), respectively.

h0(n) = sinc(n− N2 − 1

2
), for n = 0, 1, ...N2 (5a)

h1(n) = sinc(n− N2 − 1

2
− 0.5), for n = 0, 1, ...N2 (5b)

where N2 is the odd-order of the sinc-interpolation filter. As

shown in Fig. 4(b), at 0.5Ts the MSE of the cascaded sinc-

Farrow filter exhibits a minimal value that is mainly deter-

mined by the order of the sinc-interpolation filter (the cascased

sinc-interpolator has the same order as the Farrow in Fig. 4(b)),

because, as presented in Fig. 4(a), there is no MSE caused

by the Lagrange interpolation at zero delay. As the order of

the sinc-interpolation filter rises, the ideal FD interpolation

of 0.5Ts is better approximated. By properly switching the

outputs between these two filter branches, the overall MSE

can be reduced. The intercepts of the H0(z)-FS and H1(z)-
FS correspond to the optimal switching moments but typically

some hysteresis is needed to prevent oscillation. Note that

the optimal switching moments vary with different choices

of Lagrange filter order N , prototype filter order L and the

H1(z) filter order.

Consider N = 11 and L = 11 in Fig. 4(b), for this

implementation, the optimal switching points are at d1 = 0.3
and d2 = 0.7. If d is smaller than d1 or if d is lager than d2,

the switch in Fig. 3 is placed in position 1 and the H0(z) filter

is activated. If d is between d1 and d2, the switch is moved to

position 2 and the Farrow filter is preceded by H1(z). When

implementing the structure in a symbol synchronization loop,

a small amount of hysteresis is added around the optimal

switching values d1 and d2 to ensure stable operation.

It is also worthwhile to mention that H0(z) can simply be

replaced by shift registers since it introduces no additional

fractional delay. The main advantage of using the cascased

structure lies in the fact that when jointly optimizing the

two filtering blocks the computational complexity to generate

practically the same filtering performance can be drastically

decreased.

IV. PROPOSED INTERPOLATION FILTER STRUCTURE

Note that the first sub filter C0(n) is equal to 1 for all

delay values in FS, as shown in Fig. 1. Thus, the dual form of

the cascaded filter structure, i.e. Farrow-sinc, can be used and

the first sub-filter C0(n) can be substituted by h1(n) without

having to change the parameter d.

The orders of the Farrow structure and H1(z) are first kept

equal for simplicity. The delay line represented by H0(z)



is inherently included in the pipelined structure (referred to

Fig. 2). When the FD approaches 0.5Ts, the deviation Δh(n)
of the Lagrange interpolation from the sinc-interpolation of

0.5Ts is added to the column C0(n) of the FS (N + 1) ×
(M + 1) coefficient matrix in order to correct the approxi-

mation error at 0.5Ts. The updating of the fractional delay to

(d− 0.5)Ts is no longer required.

Δh(n) = sinc(n− N − 1

2
− 0.5)− hd=0.5(n) (6)

C
′
0(n) = C0(n) + Δh(n), for n = 0, 1, 2, ..., N (7)

It is easily noted that this proposed Farrow-sinc filter bank

structure (denoted as proposed FS in Fig. 4) has the same

MSE value as the cascaded sinc-Farrow filter structure at

0.5Ts. However, the remarkable aspect of this proposed struc-

ture is that the MSE value starts decreasing when FD deviates

from 0.5Ts as illustrated in Fig. 4(c), because the remaining

sub-filters of Farrow structure compensate the approximation

error. Therefore, the useful delay range between the two

intercept points is widened compared to the cascaded sinc-

Farrow structure at the same implementation complexity as

depicted in Fig. 4(c).

It should be pointed out that the Lagrange filter has good

FD approximation when d is far from 0.5Ts, even for low

filter orders. This allows us to jointly optimize the order of

the Farrow structured Lagrange filter and H1(z) in order to

achieve a superior performance.

The design procedure is slightly modified. Assuming that

the order of H1(z) is now N + 2K. The Farrow structure of

order N is first truncated from the prototype Farrow structure

of order L [10]. Second, the Farrow (N + 1) × (M + 1)
coefficient matrix is extended to (N + 1 + 2K) × (M + 1)
by adding K zeros above and below the original Farrow

coefficient matrix, which is nothing else than pipelining the

signal. Hence, (6) and (7) are again applicable.

A design example is presented in Fig. 4(d), the ultimate

MSE of the proposed structure with N = 7 and K = 5 is

much lower than those in Fig. 4(c), in particular in the area

of 0.5Ts FD. Moreover, this superior FD approximation is

achieved even with merely half the implementation cost. The

optimization map for different orders of Farrow structured

Lagrange filters and H1(z) filters with L = N+30 is shown in

Fig. 5 where the optimal filter orders can be chosen for a given

MSE performance requirement. In addition, this optimization

map reveals that Lagrange interpolation performance only

increases slightly with increasing filter order, while the order

of H1(z) has significant influence. Filter orders for this design

example are indicated in the optimization map.

V. IMPLEMENTATION COST

The computational cost of the Farrow structure of order N is

N(N+1)+N multiplications and N2+N additions per output

sample. Note that C0(z) is equal to 1 for all delay values in

the original Farrow structure. Thus, the implementation cost

of C0(z) is discarded. A modified Farrow structure proposed

in [5] takes advantage of the symmetry of the polynomial
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Fig. 4. Mean-square-error (MSE) curves of interpolation filters of order N and
different choices of prototype filter order L. (a) Farrow-structure of truncated
Lagrange. (b) Cascaded Farrow of order N = 11. (c) Cascaded Farrow and
proposed Farrow filter structure of order N = 11 and K = 0. (d) Proposed
filter structure of order N = 7 and K = 5.
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Fig. 5. Optimization map showing MSE performance with different orders
of Lagrange and H1(z) filters. The values in the dashed lines represent the
worst MSEs over the whole FD range when the corresponding Lagrange and
H1(z) filter orders are used in the proposed filter structure.

TABLE I. COMPUTATIONAL COMPLEXITY COMPARISON FOR

CASCADED SINC-FARROW AND PROPOSED STRUCTURE WITH

(MODIFIED) FARROW, ONLY COUNTING THE NUMBER OF MULTIPLIERS

AND ADDERS

Cascaded
Structure
N=11

Proposed
Structure
(N,K)=(11,0)

Proposed
Structure
(N,K)=(7,5)

Proposed
Structure
with
M. Farrow
(N,K)=(7,5)

Mul + Add Mul + Add Mul + Add Mul + Add

H1(z) 12+11 12+11 18+17 13 +17

Farrow 143+132 143+132 63+56 35 +56

Total 155+143 155+143 81+73 48 +73

coefficients, which leads to a reduction in the number of

multipliers for the proposed structure. The partial symmetry of

H1(z) in Section IV yields a further reduction in the number

of multipliers. Therefore, the proposed structure with modified

Farrow requires (N(N +1))/2+2N +1+K multiplications

and N2 + 2N + 2K additions for odd N .

In Table I the computational complexities of different

implementations are compared in terms of the number of

multiplications (Mul) and additions (Add) for computing one

output sample. These results correspond to Fig. 4(b), 4(c) and

4(d) respectively. The implementation cost of Section IV is

quadratically reduced by lowering the order of the Farrow

structure.

In addition, the constant coefficient multiplication in the

Farrow structure can be efficiently and multiplierlessly im-

plemented on FPGA with a limited number of shifters and

adders by using the canonical signed digit (CSD) format. The

utilization of the CSD format can dramatically reduce the

number of non-zero bits representing the constant coefficient,

therefore reducing the amount of calculations.

VI. CONCLUSION

This paper has shown that the proposed structure not only

features the advantages of the pipelined Farrow structure

in terms of variable fractional delay interpolation and high

throughput, but also enhances the fractional delay approxima-

tion. It is shown in the example designs that, a overall MSE

of approximately 2% is achieved with the proposed structure

at half the implementation cost, compared to 4% using a

traditional implementation. The considerably lower level of

MSE over the whole FD range implies that this proposed

structure outperforms both the truncated Lagrange with Farrow

structure and the cascaded structure of sinc-Farrow. These

remarkable features can be very beneficial to applications such

as symbol synchronization in digital receivers.
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